Algorithms and software for support of gene identification experiments

نویسندگان

  • Sing-Hoi Sze
  • Mikhail A. Roytberg
  • Mikhail S. Gelfand
  • Andrey A. Mironov
  • Tatiana V. Astakhova
  • Pavel A. Pevzner
چکیده

MOTIVATION Gene annotation is the final goal of gene prediction algorithms. However, these algorithms frequently make mistakes and therefore the use of gene predictions for sequence annotation is hardly possible. As a result, biologists are forced to conduct time-consuming gene identification experiments by designing appropriate PCR primers to test cDNA libraries or applying RT-PCR, exon trapping/amplification, or other techniques. This process frequently amounts to 'guessing' PCR primers on top of unreliable gene predictions and frequently leads to wasting of experimental efforts. RESULTS The present paper proposes a simple and reliable algorithm for experimental gene identification which bypasses the unreliable gene prediction step. Studies of the performance of the algorithm on a sample of human genes indicate that an experimental protocol based on the algorithm's predictions achieves an accurate gene identification with relatively few PCR primers. Predictions of PCR primers may be used for exon amplification in preliminary mutation analysis during an attempt to identify a gene responsible for a disease. We propose a simple approach to find a short region from a genomic sequence that with high probability overlaps with some exon of the gene. The algorithm is enhanced to find one or more segments that are probably contained in the translated region of the gene and can be used as PCR primers to select appropriate clones in cDNA libraries by selective amplification. The algorithm is further extended to locate a set of PCR primers that uniformly cover all translated regions and can be used for RT-PCR and further sequencing of (unknown) mRNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrotactile Identification of Signal-Processed Sounds from Environmental Events Presented by a Portable Vibrator: A Laboratory Study

Objectives: To evaluate different signal-processing algorithms for tactile identification of environmental sounds in a monitoring aid for the deafblind. Two men and three women, sensorineurally deaf or profoundly hearing impaired with experience of vibratory experiments, age 22-36 years. Methods: A closed set of 45 representative environmental sounds were processed using two transposing (TRH...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Identification of Structural Defects Using Computer Algorithms

One of the numerous methods recently employed to study the health of structures is the identification of anomaly in data obtained for the condition of the structure, e.g. the frequencies for the structural modes, stress, strain, displacement, speed,  and acceleration) which are obtained and stored by various sensors. The methods of identification applied for anomalies attempt to discover and re...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

Simulation and prediction of scour whole dimensions downstream of siphon overflow using support vector machine and Gene expression programming algorithms

Background and Objectives: The purpose of this study is to simulate and predict the dimensions of the scour cavity downstream of the siphon overflow using the SVM model and compare it with other numerical methods. The use of the SVM algorithm as a meta-heuristic system in simulating complex processes in which the dependent variable is a function of several independent variables has been widely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 1998